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Abstract. In this article, the partial case of gyrostats angular motion in the central gravitational field is 

investigated at the condition of the collinearity of the angular momentum and the gravity field gradient. This case is 

closely connected with V.A. Stekloff’s case of the rigid body motion and can be characterized as its partial 

generalization on the gyrostat motion. Considered dynamical circumstances can be realized in “conical precessions” 

regimes of rotating prolate gyrostat-satellites at the stabilization by the gravitational way along the local vertical 

direction. The corresponding analytical solution for the gyrostat/gyrostat-satellite angular motion parameters is 

obtained in terms of elliptic functions. In addition, the possibility of chaotization phenomena in the gyrostat-satellite 

angular motion are investigated. 

Key-Words: - Gyrostat; Satellite; Dual-Spin Spacecraft; Rigid Body Dynamics; Explicit Exact Solutions; 

Elliptical Integrals; Jacobi Elliptic Functions; Stekloff case; Serret-Andoyer-Deprit variables; Chaotic dynamics 

 

Introduction 

The angular motion of gyrostats and similar rigid bodies systems under the action of internal 

and external forces and torques remains one of the main research theme of the classical mechanics, 

and also has the bright spectrum of applications, including the space flight dynamics and, 

especially, the problem of satellites attitude dynamics. The angular motion of gyrostats in the 

central gravity field is an important part of the mentioned scientific problem. The task of the 

motion of rigid body and gyrostats in the central gravity field was considered in different 

formulations in many research works. Classical and new solutions linked with the task of the 

angular motion of rigid bodies and gyrostats in the gravity field are presented, e.g., in [1-9]. 

Important cases of the analysis of the different regimes and evolutions of rigid bodies motion under 

the gravity force, including the synthesis of the stability conditions can be found, for example, in 

[10-28], and, herewith the special questions of an irregular dynamics of gyrostats are considered 

in [29-33].  

The works [5-8] should be underlined separately because they are linked with the considering 

task due to the ascertained dynamical analogy of the rigid body motion in a liquid with its motion 

in the central gravity field. This dynamical analogy was found by V.A. Stekloff [5], and 

generalized by P.V. Kharlamov [7] on the case of motion of gyrostats. This dynamical analogy 

allowed to use the solutions [6] for describing the rigid bodies motion in the central gravitational 

field, that was presented e.g. in [1, 7]. 

In this article, the partial case of the gyrostat angular motion in the weak central gravitational 

field is investigated at the condition of the collinearity of the angular momentum and the gravity 

field gradient. At such conditions it is possible to approximately consider the vector of the 

gyrostat/gyrostat-satellite angular momentum as the constant vector in the inertial space. Then the 

necessary quantity of first integrals can be found, and the analytical solution for the 

gyrostat/gyrostat-satellite angular motion parameters can be obtained in terms of elliptic functions. 

This case, as it will be shown, is not only closely connected with the V.A. Stekloff case, but can 

be characterized as the partial generalization of the V.A. Stekloff case on the gyrostat motion - this 

circumstance, as well as new analytical solutions, defines the fundamental side of the work.  

From the another point of view, the considered case describes the attitude dynamics of an axial 

gyrostat-satellite in the central gravity field at the realizations of “conical precessions” regimes 

[10], when it is stabilized by the gravitational way. This defines the applied side of the work. The 

indicated conical precession is one of the most useful case of the attitude stabilization of prolate 
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spacecraft on the orbit, when its longitudinal axis fulfills the precessional motion around the local 

“vertical direction” connecting the gravity center with the spacecraft center of mass. 

In addition, the possibility of chaotization phenomena in the satellite angular motion close the 

conical precession are investigated in the article – this also can be indicated as the important result. 

It is known, that the dynamical chaos is the important phenomenon studied by the modern science 

in the fundamental exploration and in the broadly presented area of applications. The chaos in the 

role of irregular perturbations usually is considered as the negative aspect of systems dynamics 

and as the harmful process, and, therefore, it should be taking into account in the framework of the 

gyrostat-satellites attitude dynamics. Also the dynamical chaos can be used in its positive aspect 

as the dynamical instrument, which can change and improve dynamical processes (e.g. chaotic 

mixing of fuel components at the combustion in engines; the signals synchronization; the chaotic 

cryptography, etc.); and also dynamical chaos can be applied to the attitude control of satellites, 

that was considered in details in [34]. 
 

1. Main mechanical and mathematical models 

Let us consider the angular motion (around the center of mass) of an axial gyrostat-satellite 

(dual-spin spacecraft) in the weak central gravity field at the initial coinciding of its angular 

momentum and the direction of the gravity force (fig.1).  

The collinearity of the satellite angular momentum and the gravity field’s gradient can be 

realized in “conical precessions” regimes of a rotating prolate satellite, when it is stabilized by the 

gravitational way along the local vertical direction.  

In this case, it is possible to approximately consider that the vector of the satellite angular 

momentum K is practically constant vector in the inertial space. This assumption allows to take 

the direction of the angular momentum vector as the short-term immovable direction coinciding 

with the action line of the gravity force applied to the center mass of the satellite (fig.1) – this 

direction of the local vertical is correspond to the axis CZ of the inertial coordinates frame CXYZ. 

The point C is the center of mass of the satellite.  

 

 

Fig.1 The schematic structure of the axial gyrostat with one rotor and the considered case of the spatial orientation 

of the system angular momentum (K) relatively the direction of the central gravity gradient vector (g) 



The axial gyrostat is constructed as the system of two coaxial bodies: the main body with 

the general inertia tensor and the dynamically symmetrical rotor (such constructional scheme also 

is called as the “dual-spin spacecraft”). The main moving coordinates frame Cxyz is connected 

with the main body of the satellite; the axis Cz is the longitudinal axis of the satellite. The inertial 

axis CZ, as it was mentioned above, is anti-directional to the weak central gravity gradient vector 

g (i.e. the direction from the center of mass to the gravity center). The spatial position of the axis 

CZ can be described relatively the main body (fig.2) by the directional cosines  1 cos , ,CZ Cx   

 2 cos , ,CZ Cy    3 cos , .CZ Cz   The rotor-body rotates relatively the main body, and it has 

its own absolute longitudinal angular momentum Δ (fig.2).  

 

 

Fig.2 The axial gyrostat-satellite and coordinates frames 

 

The dynamical equation of the angular motion can be written in the main moving 

coordinates frame Cxyz using the local derivation: 

 

;g

d
M

dt
    K ω K M     (1.1) 

 

where Mg – is the external torque from the central gravitational field, and M   is the internal 

torque acting on the rotor from the side of the main body along the axis Cz (e.g., it is a spin-up 

electromotor torque, a friction between bodies, etc.), and where the angular momentum of the 

system K in projections on axes of the connected coordinates frame Cxyz has the form: 

 

 , ,
T

bAp Bq C r K      (1.2) 

 

Here ,b rA A A   ,b rB B A   b rC C C  ; , ,b b bA B C  are the axial inertia moments of the main 

body, and , ,r r rA A C  are the axial inertia moments of the dynamically symmetrical rotor in the 

connected frame Cxyz; {p, q, r} – are the components of the angular velocity vector of the main 

body ω in the connected frame Cxyz. Also we assume that A B C   - this relation corresponds 

to the prolate form of the gyrostat (that is useful for the gravitational attitude stabilization). 



The kinematical equations for the directional cosines can be written as the well-known 

Poisson's equations: 
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It is worth to indicate the well-known connections between the directional cosines and the Euler 

angles (fig.2): 

 

1 2 3sin sin ; sin cos ; cos             (1.4) 

 

 Let us investigate the axial gyrostat angular motion at the absence of the internal interaction 

between coaxial bodies (MΔ=0), therefore, the value of the longitudinal angular momentum of the 

rotor is constant (Δ=const), that is corresponds to the natural attitude dynamics of the gyrostat-

satellites (to the spin-stabilized motion of dual-spin spacecraft). 

The external torque from the central gravitational field can be evaluated in the main moving 

frame Cxyz relatively the center of mass of the gyrostat (the point C) as the sum of its parts acting 

on the separate bodies. So, fulfilling the steps of general methodology [1], it is possible to write 

the following expressions for this torque (and its parts applied to the main body and to the rotor): 

 
b r

g C C M M M       (1.5) 

 

Considering the dynamical symmetry of the rotor, the summands in (1.5) are: 
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where μ is the “gravitational parameter” depending on the distance between the gyrostat mass 

center and the center of gravity. Therefore, the common torque has the form: 
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The dynamical equations of the axial gyrostat with one rotor in the central gravitational 

field (1.1) can be rewritten as follows: 
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Let us further investigate the gyrostat attitude dynamics in the weak central gravitation field at the 

initial “vertical” position of the angular momentum (fig.1, 2). In this case, the gravitational 



parameter μ has a small value and the corresponding external torque weakly affects the angular 

momentum of the system. At such assumptions, the angular momentum (with its quite large value) 

practically does not change its vertical orientation (K≈const) under the influence of the perturbing 

gravitational torque. Then it is possible to define approximately the directional cosines of the 

“vertical” axis CZ using the components of the angular momentum: 

 

 1 2 3; ; bAp K Bq K C r K         (1.9) 

 

The substitution of expressions (1.9) into equations (1.8) allows to write the closed form 

of differential equations at the absence of the interaction between the main body and the rotor of 

the gyrostat (MΔ=0): 
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As it follows from the right parts of the equations (1.10), the action of the central gravity torque 

can be formally considered as the small perturbation, which do not sufficiently change the angular 

momentum of the torque-free system when the following dimensionless parameter is small: 

 

2
1
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K
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         (1.11) 

 

The condition (1.11) supplies the fulfillment of the approximations (1.9) and the correctness of the 

considering task of the gyrostat-satellite motion in the weak central gravitational field. 

 

2. The connection of the considered gyrostat motion with the V.A. Stekloff case 

As it is known, V.A. Stekloff showed [5] that the solution of F. Brune [6] is the partial case 

of the solution of the equations of a body motion in a liquid, which can be presented in the reduced 

and generalized form, that is appropriate for gyrostat model [7] (in the designations from [7]): 
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where the subscription (1,2,3) means the circular permutation in all low indexes; parameters λi and 

μi are defined by cyclical flows of the liquid (they equal to zero at all zero main circulations); 

variables Ri represent complexes of “impulsive forces” and circulations parameters. 

If we express the absolute angular momentum of the rotor through its relative angular 

velocity, then the system (1.8) takes the form: 
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where σ is the relative angular velocity of the rotor and MΔ is the internal torque acting on the rotor 

from the side of the main body. 

 Passing to our notations, and taking that  1 2 30; ; 0; ;r i i iC R              the 

system (2.1) is strictly reduces to (2.2) and (1.3) at the condition that the relative angular 

momentum of the rotor is constant  3 constrC   , that can be fulfilled only at the action of 

the followed “stabilizing” internal torque:  

 

rM C r        (2.3) 

 

Therefore, from the system (2.1) the equations of the gyrostat motion with the constant relative 

angular momentum of the rotor (at the internal torque (2.3)) in the central gravity field follow, i.e. 

the task of the motion of the body/gyrostat in liquid and task of the motion of the body/gyrostat in 

the central gravity field are in a sense analogous – it is, in fact, the formulation of the analogy of 

V.A. Stekloff with its expansion by P.V. Kharlamov on the gyrostat case: 
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As it is known [1], in the Stekloff case the system equations for the rigid body motion has 

the partial solution in the form  

 

1 2 3; ;A p B q C r           (2.5) 

 

were A', B', C' are some constant; and then the dynamical system can be reduced to the torques-

free system with the corresponded solution for the free rigid body. 

 In the case of the gyrostat motion with the constant relative angular momentum of rotors 

(λi=const) in central gravity field, in the accordance to the generalized analogy of V.A. Stekloff – 

P.V. Kharlamov, the analytical solution was obtained by P.V. Kharlamov [8]. 

 

Returning to our case of the gyrostat motion at the absence of the internal interaction and 

at the constancy of the absolute longitudinal angular momentum of the rotor  const; 0 ,M  

we should note that the P.V. Kharlamov’s solution [8] is not appropriate, and another solution 

should be obtained for this case. In this connection, let us obtain such solution as the analytical 

solution of the equations (1.10).  

Thus, in view of the above-mentioned aspects of the V.A. Stekloff – P.V. Kharlamov 

analogy, and due to the symmetry of the assumptions (2.5) and (1.9), the following in the next 

section analytical solutions of the equations (1.10) can be considered as a partial generalization of 

the V.A. Stekloff case on the gyrostat motion. 



 

3. The analytical solution for dynamical parameters  

 In purposes of the analytical investigation of the axial gyrostat motion dynamics it is 

needed to write the so-called “first” integrals. If we multiply the first equation (1.10) by Ap, the 

second – by Bq, third – by (Cbr+Δ), then after the summation of results, the expression follows: 
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that can be rewritten after integrating as the “first” integral for the angular momentum value: 
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The energy conservation law can be presented as the sum of kinetic and potential energy: 
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Using (1.9) from the last expression the “first” integral follows: 
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Multiplying (3.3) by 2 21A A K    and deducting (3.1), we obtain: 
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Analogously, multiplying (3.3) by 2 21B B K    and deducting (3.1), we write: 
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The groupment of complete squares in expressions (3.4) and (3.5) allows to rewrite: 
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where the local designation is involved  
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and the following coefficients are used: 
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From (3.6) the expression follows: 
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The value in curly brackets in (3.7) can be rewritten 
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and, therefore, the expression is correct: 
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Then from (3.7) it is possible to write: 
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The second equation (1.10) can be transformed to the form: 
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that after using (3.11) and (3.9) takes the shape: 
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Now to integrating (3.12) the change of variables can be used: 
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     (3.13) 

After variables changing (3.13), for the equation (3.12) we obtain the canonical form for the 

following elliptic integrals: 
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where constants and initial values are: 
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The second variables change allows to write the equation (3.14) in the form 
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where  
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After one more changing variables  1 2 1 2; min{ , }; max{ , };z cy c c c c c c k c c     the 

equation (3.17) can be integrated as the elliptic integral: 
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Then the inversion of the elliptic integral gives the analytical solution in the form of the Jacobi 

elliptic sine  
 



    0 0sn ,y t N t t I k          (3.19) 

 

Fulfilling the back variables change, we obtain analytical solutions for all dynamical 

parameters: 
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 (3.20) 

 

So, finally we have the exact explicit analytical solution (3.20) for the parameters of the 

gyrostat angular motion around the center of mass in the central gravity field at the initial “vertical” 

position of the angular momentum. This solution fully describes the attitude dynamics of the 

gyrostat in cases of conical precessions at the implementation of the gravitational stabilized motion 

(at least on a quite short time-interval of the orbital motion, when the rotation of the local vertical 

is inessential). 

To check the correctness of the solution it is possible to present the comparative results of 

the analytical and numerical modelling. At the figure (fig.3) is shown the time-history of the 

angular velocity components and directional cosines calculated by numerical integrating and with 

the help of the analytical solution (3.20). The numerical integration was fulfilled using the full 

equations (1.8), (1.3). The systems parameters and initial conditions are presented in the table 

(tabl.1) – these parameters correspond to the motion of micro-gyrostat-satellites (with masses from 

10 to 100 kg) in the central gravity field of the Earth1; for all calculations in this paper the following 

inertia moments were taken: Ab=15, Bb=10, Cb=7, Ar=5, Cr=4 [kg∙m2]. 

As can we see from the figure (fig.3-a, b), there is the complete coincidence of numerical 

results of the full equations (1.8), (1.3) and analytical solutions (3.20), (1.9) at the large natural μ-

values. Certainly, this coincidence is gradually violated with the growth of the parameter μ up to 

super large hypothetical values (fig.3-c, d).  

 

4. The canonical form of the system in the Serret-Andoyer variables 

For better understanding dynamical properties of the system, it is possible to use the 

research tools of the Hamiltonian formalism together with the canonical variables of Serret-

Andoyer [1]. As it is known, the angular momentum components are linked with the canonical 

Serret-Andoyer momentums as follows (fig.2): 
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2 2 2sin ; cos ; ;x y z bK Ap I L l K Bq I L l K C r L K I           (4.1) 

 

In the considering case, using the expressions (1.9), we can write the following expressions 

for the directional cosines through the Serret-Andoyer variables: 
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l l
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1  The values μ=(0.1÷0.2)∙10-7 [1/s2] correspond to geostationary/high Earth-orbits; and the values (0.4÷0.5)∙10-5 [1/s2] – to the 

low Earth-orbits/surface.  



 

  
(a)                                                                          (b) 

 

  
(c)                                                                          (d) 

Fig.3. The time-history of dynamical parameters:  

lines – numerical modelling for the full system ((1.8), (1.3)),  

dots – analytical solutions (3.20) for the reduced approximate system ((1.9), (1.10)) 

 

Then the Hamiltonian of the system in the Serret-Andoyer variables has the form, which 

follows from the general form (3.2) of the full energy: 
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   (4.3) 

 



where T is the kinetic energy; P is the potential energy. The Hamiltonian (4.3) corresponds to the 

full energy of the conservative system, and, therefore constE  .  

 The system in the considering case has only one positional degree of freedom (other 

coordinates are cyclic): 
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  (4.4) 

 

The qualitative forms of the phase space of the system (4.4) can be presented (fig.4) for 

different μ-values, starting from the zero and up to super large hypothetical magnitudes, which 

already do not correspond to the natural values of the gravitational parameters of the Earth. This 

set of different forms of phase portraits (fig.4) shows the series of bifurcations at the gradual 

growth of the μ-value, and it is interesting from the theoretical point of view in the framework of 

the complete qualitative analysis. In addition, we ought to note, that for natural values of the 

gravitational parameters  0 1   only the first type of the phase portrait (fig.4-a) is 

appropriate; and other types of the phase portrait are hypothetical (corresponded to attractive 

centers with super-large gravity). 

The Hamiltonian conservative system (4.4) correctly and simply describe the basic dynamical 

behavior of the gyrostat in the central gravity field at the assumptions of the smallness of the 

gravitational torque and at the coincidence of the gravity vector with the angular momentum 

direction (that is finally expressed in the relations (1.9)). This behavior is regular (fig.4); it can be 

taken as the main unperturbed dynamics in the framework of the rough consideration of the 

gyrostat-satellite motion in the framework of a primary design of space missions.  

However, with an increase in deviations from the above-mentioned assumptions, we should 

return to using the general equations (1.8) and (1.3) to describe the more complicated dynamics, 

which can demonstrate some hidden subtle aspect, including the irregular behavior. The example 

of such irregular behavior is presented at the figure (fig.5). There we see chaotic time-histories of 

all dynamical parameters (fig.5-a, b), the chaotic time-dependency of the small change (not 

exceeding 5÷10%) of the relative value of the angular momentum (fig.5-c), and the complex 

phase-trajectory with the entanglement of its shape (fig.5-d). 

 

5. The chaotization analysis  

To understand above-mentioned irregular phenomena we should write the equations for the 

Serret-Andoyer variables without the simplification (1.9) at the start of modeling. In this case the 

system still remains the Hamiltonian type since in the potential central gravity field the full energy 

is constant, and the Hamiltonian of the system can be written based on expression (3.2) after the 

introduction of the canonical variables. As it is clear, the system has three degree of freedom, 

therefore three independent canonical coordinates and three corresponding independent canonical 

impulses can be introduced with the help of the well-known procedure and conjunctional 

expressions. However, let us deviate from this classical approach, and write the closed system of 

equations for a part of canonical coordinates/impulses and directional cosines. 

 



 
(a):  2

20 0, I AB                                         (b):  2
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(c): μ=0.075                                                    (d): μ=0.150 

       
(e): μ=0.210                                                    (f): μ=0.500 

 
Fig.4. The set of phase portraits {l, L} at the growth of the gravitational parameter μ [1/s2] 

  



                     
(a)                                                                                                       (b) 

                     
(c)                                                                                                       (d) 

Fig.5. The chaotic regime of the system 

 

The direct differentiation of the expressions (4.1) and some simplifications allow to obtain the 

following formulae: 
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   (5.1) 

 

Substituting the expression for derivations of the angular velocities from the main dynamical 

equations (1.8) into (5.1) and using again (4.1), we can write 
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In addition, passing from the angular velocity components to the Serret-Andoyer variables we 

rewrite the kinematical equations (1.3): 
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    (5.3) 

 

The equations (5.2) and (5.3) together form the closed complete dynamical system fully 

describing the dynamics of the gyrostat in all details and aspects via the set of mixed variables 

  6

2 1 2 3, , , , ,l L I     . It is worth to note, that at the substitution of expressions-assumptions (1.9) 

into the system (5.2), we obtain the equations (4.4), and herewith the third equation (5.2) is reduced 

to the shape 2 0I  . 

As it is possible to see from the structure of the equations system (5.2), the action of the 

gravitational torques can be considered as the perturbation of the torques-free (μ=0) unperturbed 

dynamics of the free gyrostat. This unperturbed dynamics is fully described by the canonical 

coordinates  ,l L  at the predefined constant value of the angular momentum 2I K  and, 

therefore, the phase space of the unperturbed system can be represented as the phase plane 

 20 2 , 1 1l L I     , and this is depicted at the figure (fig.6-a), where colors of the 

trajectories symbolize different levels of the energy (the black color corresponds to the heteroclinic 

separatrix-trajectories).  

As it is known (e.g. [29]) the torques-free system (μ=0) has the heteroclinic solution damping 

to the constant values of the dynamical parameters, corresponding to stationary saddle-points. 

These saddle-points have the coordinates [l={0, π, 2π}; L=Ls] in the Serret-Andoyer phase space, 

and, that is the same, the coordinates [p=0; q=qs, r=rs] in the phase space of the angular velocity 

components (with constant values qs and rs). At the substitution these constants into the system 

(1.3), we obtain the linear differential equations describing partial regimes of motion close to the 

stationary saddle-points: 
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      (5.4) 

 

From the system (5.4) the linear equation follows: 

 

 2 2
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The solution of the equation (5.5) has the simplest harmonic structure: 
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After integrating the second and the third equations (5.4) it is possible to conclude that all of 

the partial solutions       1 2 3, ,t t t    corresponding to heteroclinic saddle-points have the 

exact harmonic structure. So, the harmonic structure of the directional cosines solutions will 

remain for all possible saddle-points, limiting the all heteroclinic trajectories in the phase space. 

This circumstance allows to approximately consider the time-dependencies for the directional 

cosines along heteroclinic trajectories as more compound functions of time, which, nevertheless, 

are decomposable and representable in the form of polyharmonic functions: 
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where        1 2 3, ,
T

t t t t     η  is the vector of polyharmonic functions of time, and  

     1 2 3, , ;
i j i j i j

T

S S S S S S
t t t   
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γ  the subscription i jS S  symbolizes the correspondence of the 

solution to initial conditions of the realization of the unperturbed heteroclinic trajectory, which is 

limiting by two saddles Si and Sj (fig.6-a). Here we note that exact explicit shapes of the functions 

 tη  are not important and necessary for the further analysis; it is enough to know that these 

functions have polyharmonic structure. 

Now to describe the perturbed dynamics near the heteroclinic trajectories we can formally 

rewrite the equations (5.2) in the classical form of the perturbed system with small polyharmonic 

perturbations [e.g. 29]: 
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with the following right-parts functions: 
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 (5.9) 

 

where 2I K  and  2O   are terms proportional to the second (and higher) powers of the small 

parameter. 

 Then the subsystem of the first and the second equations (5.8) can be considered separately 

from the third equation; this subsystem is the single degree-of-freedom system perturbed system 

with polyharmonic perturbations. The similar perturbed subsystems with the polyharmnic 



perturbations have been investigated in many articles in the framework of the gyrostat chaotic 

dynamics analysis [e.g. 29].  

Not repeating similar studies, we can say at once that the perturbed system (5.8) will 

demonstrate the chaotic dynamics near the heteroclnic trajectories of the unperturbed system of 

the torque-free gyrostat due to the heteroclinic nets initiations in the gyrostat phase space under 

the action of small polyharmonic perturbations (and without regularizing factors like frictions, the 

energy dissipation/excitation, etc.). This statement can be confirmed by the way of the Melnikov 

function evaluating, which in the considered case will have the polyhamonic form by analogy with 

[29], that defines the infinite number of intersections of splitted stable/unstable manifolds of 

heteroclinic trajectories and the heteroclinic net and chaos generation: 

 

   
        

0
0 0, ,

polyharmL l l L l t L t t t
M t f g f g dt t







   η
  (5.10) 

 

Also the chaotic behavior can be demonstrated by the way of the Poincaré sections plotting 

– we will present the Poincaré sections for the full dynamical system {(5.2) and (5.3)} without its 

localizations near the heteroclinic area. 

So, the detected and confirmed chaotic dynamics of the gyrostat in the central gravitation 

field (based on the consideration of the localized system (5.8)) will look sufficiently more 

complicated at the modelling with the help of the full dynamical equations {(5.2) and (5.3)}; and 

the especial complication occurs in the area of heteroclinic trajectories (fig.6-b). To show this 

complex chaotic dynamics it is appropriate to plot the full-dimensional phase portraits (fig.7) of 

the system (5.2) and their Poincaré sections by the plane I2=I2(0)=K (fig.8). 

 

 

 
(a): μ=0                                                                   (b): μ=0.046 

Fig.6. The change of the phase portrait structure under the action of the gravity torques 

 

 



 
 

 
Fig.7. The full-dimensional phase portrait and its projections 

 

From the fig.7 it is possible to see the mixing of phase trajectories with different energy values 

(colors from brown to blue) in the area of unperturbed separatrix (S1-S2-S’1 at fig.6-a). This proves 

the splitting the unperturbed manifolds (stable and unstable) of the separatrix and the possibility 

of reciprocal phase trajectories penetrations from different phase regions through the initiated 

heteroclinic net. The same process can be observed from the Poincaré sections (fig.8), where 

clouds of points not-belonging to invariant curves are clearly depicted – such clouds, as it is 

known, are called as “chaotic layers”, and, certainly, the width of chaotic layer depends on the 

value of perturbations (tabl.1).  

It will be fair to note that the majority of figures in this article corresponds to quite large values 

of perturbations and the angular momentum – it don’t influence in principle the fundamental nature 

of studied process, but it allows to fulfill more fast numerical calculations (with more high 

accuracy). To show the investigated process more closely to the real satellites motion (low orbits 

of the Earth, slow rotations) we can present separately the Poincaré section (fig.8-d) plotted with 

the small value of the gravitational parameter and angular momentum, that allows to see the same 

motion nature and chaotic phenomena. 

In any case, all of the modelled motion modes can be considered as the different examples of 

the possible regular and chaotic attitude dynamical regimes of gyrostat-satellites in the central 

gravity field close to the conical precession regimes at the coincidence of the angular momentum 

with the direction of the central gravity vector. Here it is worth to remind, that the conical 

precession is one of the most useful regime of the attitude stabilization of prolate satellites – it 

defines the practical applicability of obtained results and demonstrated examples. 

 



   
   (a)            (b) 

   
   (c)            (d) 

Fig.8. The Poincaré sections by the plane I2=I2(0)=K 

 

 

Table 1 - Numerical parameters  

Figures 
μ  

[1/s2] 
ε 

Initial values angular velocities 

[1/s] 

Initial values for 

directional cosines 

Angular 

momentums 

[kg∙m2/s] 

p0 q0 r0 γ1 γ2 γ3 K Δ 
3-a, b 0.0046 0.086 0 0.254 0.149 0 0.954 0.3 4 0.155 

3-c, d 0.046 0.863 0 0.254 0.149 0 0.954 0.3 4 0.155 

4-a 0 0 - - - - - - 4 0.550 

4-b 0.053 0.994 - - - - - - 4 0.550 

4-c 0.075 1.406 - - - - - - 4 0.550 

4-d 0.150 2.813 - - - - - - 4 0.550 

4-e 0.210 3.938 - - - - - - 4 0.550 

4-f 0.500 9.375 - - - - - - 4 0.550 

5 0.046 0.863 0 0.266 0.019 0 0.997 0.073 4 0.155 

6-a 0 0 - - - 0 0.954 0.3 4 0.155 

6-b 0.046 0.863 - - - 0 0.954 0.3 4 0.155 

7 0.046 0.863 - - - - - - 4 0.155 

8-a 0.055 1.031 - - - - - - 4 0.550 

8-b 0.046 0.863 - - - - - - 4 0.155 

8-c 0.0046 0.086 - - - - - - 4 0.155 

8-d 5∙10-6 0.938 - - - - - - 0.04 10-4 

 

 

6. Conclusion 

The case of the gyrostat angular motion in the central gravity field at the condition of the 

collinearity of the angular momentum and the gravity field gradient was investigated. This case of 

the gyrostat dynamics is appropriate to the description of the angular motion of the axial gyrostat-

satellite in the central gravity field at the realizations of important conical precessions regimes, 

when it is stabilized by the gravitational way along the local vertical direction. The corresponded 

analytical solution of the gyrostat/gyrostat-satellite angular motion was obtained in terms of 

elliptic functions. This solution can be characterized as the partial generalization of V.A. Stekloff 

case of the body motion. 



The possibility of chaotization phenomena in the satellite angular motion close to the conical 

precession regime was investigated in the article. The dynamical chaos, as it was shown, arises 

due to the complicity of the dynamics near the heteroclinic separatrix, where the action of the 

torque from the central gravity forces makes the phase trajectory penetrate into different areas of 

the system phase space through the perturbed heteroclinic manifolds. This phenomenon should be 

taking into account at the developing space missions for prolate gyrostat-satellites using the 

gravitational attitude stabilization. 
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